
zk-SNARK explained: Basic Principles

Hartwig Mayer
{hartwig.mayer}@coinfabrik.com

CoinFabrik

December 13, 2016 (Revised December 23, 2018)

Abstract

This document is an informal guide to zk-SNARK – a zero-knowledge Argument-
of-Knowledge. We do not discuss security or implementation. Our aim is to go
through the mathematics of the zk-SNARK protocol used in Zcash and the smart
contract system Hawk. This protocol can be used in many other applications, like
Verifiable Computation (VC).

1 Introduction
The acronym zk-SNARK stands for: zero-knowledge Succinct Non-Interactive AR-
gument of Knowledge. This means, it is a protocol which creates a framework in
which a person – called prover – can quickly convince another person – called verifier
– that she or he ‘knows’ a secret without revealing anything about the secret. The
first constructions of SNARK protocols were inspired by the PCP theorem which
shows that NP statements have ‘short’ probabilistic checkable proofs. New instanti-
ations were found which allow faster and shorter proofs, when a pre-processing state
is permitted.
We will look at a zk-SNARK model with a pre-processing state. This model, pro-
posed by Gennaro et al., uses circuits which are basically devices with inputs of 0
or 1 and an output of 0 or 1. The prover is someone who knows a string (0, 1, . . . , 1)
that will result in a 0 output. The prover’s secret is this string. In order to convince
the verifier that he or she knows a string that has an output of 0, the prover gives
a proof π to the verifier. The verifier checks this proof. If the proof is correct, the
verifier can be sure that the prover knows a correct string.
The purpose of this paper is to present the construction of the proof π and the
verification process in zk-SNARK as proposed in [GGPR13]. Their approach to
zk-SNARK uses arithmetic circuits and quadratic arithmetic programs. We aim to
concisely describe how these objects are used in their protocol and to show that
their results satisfy three of the four defining properties of zk-SNARK:

• Completeness: a verifier accepts always an honestly-generated proof π.

• Soundness: a prover who does not know a secret can convince a verifier only
with a negligible probability.

1

http://www.coinfabrik.com/

• Zero-Knowledge: a correct proof π does not leak any information about
the secret.

We will not discuss the "succinct" part of zk-SNARK, i.e., proof-size and running
time. For topics like arithmetic circuit generation and multiple uses of one-time
setup, as well as security assumptions and implementation details, please refer to
the following articles: [GGPR13], [PHGR13], and [BSCTV14].

2 Arithmetic Circuits and Quadratic Arithmetic Pro-
grams
Arithmetic circuits can, like Boolean circuits, be represented as graphs with wires
and gates as edges and vertices, respectively. We can assign a value to each input and
output of a gate. The validity of this assignment depends on the circuit. The idea
behind the zk-SNARK protocol using arithmetic circuits is to translate a valid circuit
assignment into an algebraic property of polynomials, using quadratic arithmetic
programs.

2.1. Arithmetic Circuits. Let C : Fn × Fh −→ Fl be a map which takes n + h
arguments from a finite field F as inputs and produces l outputs in F. The map
C is an arithmetic circuit if the outputs are determined by the inputs which pass
through wires to gates where their values are manipulated according to arithmetic
operations + or × (allowing constant gates). The wires and gates have to form an
acyclic directed graph.
A valid assignment for an arithmetic circuit C is a tuple (a1, . . . , aN) ∈ FN , where
N = (n + h) + l is the number of all inputs and outputs of the circuit, such that
C(a1, . . . , an+h) = (an+h+1, . . . , aN).

2.2 Example. The map C : F2
11 × F2

11 −→ F2
11 with F11 = Z/11Z and given by

C(x1, x2, x3, x4) :=
(
(x1 + 7x2)(x2 − x3), (x2 − x3)(x4 + 1)

)
is an arithmetic circuit. An example of a valid assignment is (0, 1, 1, 1, 0, 0) ∈ F6

11.
The circuit C is depicted in Figure 1. (Cf. [GGPR13], section 7.4).

Output a5 Output a6

× ×

+ − Input a4

Input a1 Input a2 Input a3

a1 + 7a2 a2 − a3 +1

×7

Figure 1: An example of an arithmetic circuit.

2

2.3. Quadratic Arithmetic Programs. The role of a Quadratic Arithmetic
Program (QAP) in zk-SNARK is to provide the prover with tools to construct the
proof π for the claim that she or he knows a valid assignment (a1, . . . , aN) ∈ FN for
a circuit C. In fact, a QAP Q(C) := (~A, ~B, ~C,Z) for a given arithmetic circuit C
provides three sets of polynomials

~A = (Ai(z))
m
i=0, ~B = (Bi(z))

m
i=0, ~C = (Ci(z))

m
i=0 (m ≥ N)

with coefficients in F, and a target polynomial Z(z) ∈ F[z] such that: The polynomial
Z(z) divides the polynomial

P (z) :=
(
A0(z) +

m∑
i=1

aiAi(z)
)

︸ ︷︷ ︸
:=A(z)

(
B0(z) +

m∑
i=1

aiBi(z)
)

︸ ︷︷ ︸
:=B(z)

−
(
C0(z) +

m∑
i=1

aiCi(z)
)

︸ ︷︷ ︸
:=C(z)

(1)

if and only if (a1, . . . , aN) is a valid assignment for the circuit C. The prover con-
structs P (z) for his proof π, and the verifier will "easily" check the divisibility
property of P (z) by Z(z).

2.4. Construction of QAPs. In this section we explain how to construct a QAP
from an arithmetic circuit C. We illustrate each step of the construction in section
2.5 with the example we discussed earlier in section 2.2.
We consider an arithmetic circuit C whose circuit outputs are all outputs of mul-
tiplication gates. The positive integer m is the number of all input wires into the
circuit plus the number of multiplication gates.
1. Preparation: Let M be the set of multiplication gates (labeled by the index of
its output wire) and let W be the set of special wires, i.e., either input wires to the
circuit or the output wires of multiplication gates. For a gate g ∈ M , let Ig,L ⊂ W
be the set of special wires entering g from the left and which do not pass through
another multiplication gate before g. Let Ig,R be defined similarly but with wires
entering from the right.
2. Target Polynomial: Define Z(z) =

∏
g∈M (z − rg) with distinct roots ri ∈ F.

3. Left and Right Input Polynomials: Choose polynomials for ~A and ~B with:

Ai(rg) = cg,L,i if i ∈ Ig,L otherwise Ai(rg) = 0

Bi(rg) = cg,R,i if i ∈ Ig,R otherwise Bi(rg) = 0 (2)

where cg,L,i denotes the scalar with which the ith special wire enters gate g from the
left. The constants entering gate g from the left and right are captured in A0(rg)
and B0(rg), respectively.
4. Output Polynomial: Choose polynomials for ~C so that

Ci(rg) = 1 if i = g otherwise Ci(rg) = 0.

The polynomials we have chosen allow to calculate the inputs and outputs for any

3

multiplication gate g ∈M :

A(rg) = A0(rg) +

m∑
i=1

aiAi(rg) = A0(rg) +
∑
i∈Ig,L

aicg,L,i "Input to gate g from left"

B(rg) = B0(rg) +

m∑
i=1

aiBk(rg) = B0(rg) +
∑
i∈Ig,R

aicg,R,i "Input to gate g from right"

C(rg) = C0(rg) +

m∑
i=1

aiCi(rg) = ag "Output of gate g".

This means that

P (rg) = A(rg) ·B(rg)− C(rg) = 0 (for all gates g ∈M).

Conclusion: (a1, . . . , aN) is a valid assignment for circuit C, if and only
if the polynomial P (z) has zeros at all rg which is, by polynomial division,
equivalent to Z(z) divides P (z).

2.5. QAP construction for the circuit in section 2.2.
1. M = {5, 6} and W = {a1, a2, a3, a4, a5, a6}. We have m = N = 6.
2. Target polynomial: Z(z) = (z − r5)(z − r6), r5, r6 ∈ F11 with r5 6= r6.
3. & 4. Left Input Polynomials evaluated at r5 and r6:

(A0(r5), A0(r6)) = (0, 0) no constants enter gate 5 or gate 6
(A1(r5), A1(r6)) = (1, 0) wire a1 enters gate 5 but not gate 6
(A2(r5), A2(r6)) = (7, 1) wire a2 enters gate 5 (with factor 7) and gate 6
(A3(r5), A3(r6)) = (0,−1) wire a3 enters only gate 6 with factor −1
(A4(r5), A4(r6)) = (0, 0) wire a4 does not enter gate 5 or gate 6
(A5(r5), A5(r6)) = (0, 0) wire a5 does not enter gate 5 or gate 6
(A6(r5), A6(r6)) = (0, 0) wire a6 does not enter gate 5 or gate 6.

Similarly for the right inputs, the polynomials satisfying (2) are:

A0(z) = A4(z) = A5(z) = A6(z) = 0 B1(z) = B5(z) = B6(z) = 0
A1(z) =

1
r5−r6 (z − r6) B0(z) = B4(z) =

1
r6−r5 (z − r5)

A2(z) =
1

r6−r5 (z − r5) +
7

r5−r6 (z − r6) B2(z) =
1

r5−r6 (z − r6) = −B3(z)

A3(z) =
1

r5−r6 (z − r5)

Proceeding with choices for the polynomials in ~C, we find

P (r5) = A(r5) ·B(r5)− C(r5) = (a1 + 7a2)(a2 − a3)− a5
P (r6) = A(r6) ·B(r6)− C(r6) = (a2 − a3)(1 + a4)− a6.

Hence, Z(z) divides P (z) if and only if r5, r6 are roots of P (z), i.e., (a1, . . . , a6) is a
valid assignment for C.

3 From QAP to zk-SNARK
To explain how a QAP for an arithmetic circuit is used in the zk-SNARK protocol
we will use some helpful notation. For an arithmetic circuit C : Fn × Fh −→ Fl, we
define the two sets

4

· RC := {(~x, ~w) ∈ Fn × Fh |C(~x, ~w) = 0} "valid assignments with outputs of 0"
· LC := {~x ∈ Fn | ∃ ~w ∈ Fh : C(~x, ~w) = 0} "language" (NP-complete)

where ~w is called witness, and which will be the prover’s secret. The protocol consists
of three algorithms which are usually named: key generation, prover, and verifier.

3.1. Introductary Example. We want to explain the basic mechanism of zk-
SNARK on the basis of the arithmetic circuit C we used as an example in section
2.2. Assume the prover knows the valid assignment (~x, ~w) = (0, 1, 1, 1) ∈ RC . In
the first phase, key generation, the QAP Q(C) including the target polynomial
Z(z) = (z− r5)(z− r6) must be constructed by a trusted third party. In the second
phase, the prover claims that ~x = (0, 1) ∈ LC , i.e., "I know a witness ~w", and
constructs the polynomial

P (z) = (A2(z) +A3(z) +A4(z)) · (B0(z) +B2(z) +B3(z) +B4(z))− 0

=
7

r5 − r6
(z − r6) ·

2

r6 − r5
(z − r5) =

7

r5 − r6
· 2

r6 − r5
Z(z)

for his proof π. In the third phase, the verifier checks that Z(z) divides P (z). If
the proof was constructed correctly, the verifier can infer that the prover knows a
witness ~w.

3.2. Bilinear Cryptography. The SNARK protocol in [GGPR13] is based on
bilinear pairing cryptography. This means that the polynomials of a QAP be-
come encoded into elements of groups. Therefore, we assume two cyclic groups
G1 and G2 (in additive notation) of prime order r with generators P1 and P2, re-
spectively, together with a map e : G1 × G2 −→ GT , where GT is a group (in
multiplicative notation) of order r. The map e is assumed to be (i) Z-bilinear, i.e.
e(n1P1, n2P2) = e(P1, P2)

n1n2 , and (ii) non-degenerate, i.e., e(P1, P2) 6= 1GT
.

The idea of encoding consists of evaluating, for example, the polynomialsAi(z), Bi(z)
at a random element τ ∈ F and mapping these elements to Ai(τ)P1 in G1 and
Bi(τ)P2 in G2. The calculations in the polynomial ring F[z] are translated to cal-
culations in the exponent of GT by e(Ai(τ)P1, Bi(τ)P2) = e(P1, P2)

Ai(τ)Bi(τ).

3.3. SNARK – Completeness: We focus on the part of the SNARK protocol
which assures a verifier always accepts an honestly generated proof. The polynomials
of the QAP of an arithmetic circuit are generated and encoded in the first phase

Key Generation
Input: Arithmetic circuit C : Fn × Fh −→ Fl

1. Construct the QAP Q(C) = (~A, ~B, ~C,Z) of C.
2. Randomly sample τ, ρA, ρB ∈ F. Set ρC := ρAρB .
3. Generate the Proving Key pk := (pkA,pkB ,pkC ,pkH) where

pkA := (Ai(τ)ρAP1︸ ︷︷ ︸
pkA,i

)mi=0 pkB := (Bi(τ)ρBP2︸ ︷︷ ︸
pkB,i

)mi=0 pkC := (Ci(τ)ρCP1︸ ︷︷ ︸
pkC,i

)mi=0

pkH := (τ iP1︸︷︷︸
pkH,i

)di=0

4. Generate the Verification Key vk := (vklC, vkZ) where

vklC := (Ai(τ)ρAP1︸ ︷︷ ︸
vkIC,i

)ni=0 vkZ := Z(τ)ρCP2

Output: (pk, vk)

5

The prover knows a valid assignment (~x, ~w) ∈ RC and must find a valid distribution
for all the multiplication gates of the arithmetic circuit C. This can be achieved
with a polynomial-time algorithm QAPwit(C, ~x, ~w) (see [BSCTV14], Lemma 4).
The prover constructs P (z), divides it by Z(z), and uses the proving key to encode
the result in G1.

Prover
Input: pk, ~x ∈ Fn, and ~w ∈ Fh

1. Construct the QAP (~A, ~B, ~C,Z) of C.
2. Compute a valid distribution (a1, . . . , am) = QAPwit(C, ~x, ~w).
3. Determine the coefficients (hi)di=0 of H(z) = A(z)B(z)−C(z)

Z(z)

4. Construct the proof π := (πA, πB , πC , πH) where

πA :=

m∑
i=n+1

aipkA,i πB := pkB,0 +

m∑
i=1

aipkB,i πC := pkC,0 +

m∑
i=1

aipkC,i

πH := pkH,0 +

d∑
i=1

hipkH,i

Output: proof π of the statement "~x ∈ LC"

Note that, for example, πH is the encoded polynomial H(z) in the group G1, i.e.,
πH = H(τ) · ρBP1. Similarly, πB is the encoded polynomial B(z), i.e., πB =
(B0(τ) +

∑m
i=1 aiBi(τ)) · ρBP2 ∈ G2.

In the third phase, the verifier checks whether Z(z) divides P (z).
Verifier

Input: vk, ~x ∈ Fn, proof π
1. Calculate vk~x = vkIC,0 +

∑n
i=1 xivkIC,i.

2. Check QAP divisibility:

e(vk~x + πA, πB) = e(πH , vkZ) · e(πC , P2). (3)

Output: 1 (correct) or 0 (incorrect)

Note that vk~x + πA = A(τ)ρaP1, and so the verifying equation (3) is equivalent to

e(P1, P2)
ρAρBA(τ)B(τ) = e(P1, P2)

ρCH(τ)Z(τ)e(P1, P2)
ρCC(τ).

Hence, the non-degeneracy of the pairing e implies that equation (3) holds true if
and only if P (τ) = H(τ)Z(τ). If the proof was constructed honestly, then P (z) =
H(z)Z(z), and hence equation (3) holds true which shows "completeness".

3.4. SNARK – Soundness. A malicious prover could use P (z) = Z(z) for his
proof with A(z) = 1, B(z) = Z(z), and C(z) = 0. This would be accepted by the
verifier, although the prover does not really know a valid assignment (~x, ~w) ∈ RC .
Therefore, the verifier has to do two further checks which guarantee that P (z) was
built correctly.

(i) Correct Span: The polynomials A(z), B(z), C(z) are linear combinations of
~A, ~B, and ~C, respectively.

(ii) Same Coefficients: The linear combinations A(z), B(z), C(z) all use the same
coefficients ai.

6

This is basically achieved by asking the prover to construct the same proof a second
time, but using proving keys which deviate from the first ones by multiplying a
random constant, e.g. pk′A,i = αApkA,i. A prover who does not know αA, but
manages to construct π′A = αAπA, "must" have used the pkA,i and pk′A,i in the
construction.

Key Generation Extras
Correct Span Check Same Coefficient Check
1. Randomly sample αA, αB , αC ∈ F 1. Randomly sample β, γ ∈ F
2. Proving Key: 2. Proving Key:
pk′A := (αAAi(τ)ρAP1︸ ︷︷ ︸

pkA,i

)mi=0 pkK :=

pk′B := (αBρBBi(τ)P1︸ ︷︷ ︸
pkB,i

)mi=0 (β(ρAAi(τ) + ρBBi(τ) + ρCCi(τ))P1︸ ︷︷ ︸
pkK,i

)mi=0

pk′C := (αCρCCi(τ)P1︸ ︷︷ ︸
pkC,i

)mi=0.

3. Verification Key: 3. Verification Key:
vkA :=αAP2, vkB :=αBP1, vkC :=αCP2 vkγ :=γP2, vk

1
βγ :=γβP1, vk

2
βγ :=γβP2

Correct Span Check: The prover has to add

π′A :=

m∑
i=n+1

aipk
′
A,i π′B := pk′B,0 +

m∑
i=1

aipk
′
B,i π′C := pk′C,0 +

m∑
i=1

aipk
′
C,i

to the proof π. The verifier can use this proof to check whether

e(πA, vkA) = e(π′A, P2) e(vkB , πB) = e(π′B , P2) e(πC , vkC) = e(π′C , P2). (4)

Since for example e(πA, vkA) = e(π′A, P2) holds if and only if π′A = αAπA, based on
the "knowledge of exponent" assumption, there is an overwhelmingly high proba-
bility, that the prover used the encoded version pkA,i and pk′A,i of ~A.
Same Coefficient Check: The prover has to add to the proof π

πK := pkK,0 +

m∑
i=1

aipkK,i

which the verifier uses to check whether

e(πK , vkγ) = e(vk~x + πA + πC , vk
2
βγ) · e(vk

1
βγ , πB).

Similarly, the prover "must" have used the same coefficients ai for πA, πB , and πC
when this equation holds.
Since (i) and (ii) guarantee that the prover constructed the polynomial P (z) encoded
in πH correctly, the divisibility check implies that there is an overwhelmingly high
probability that she or he ‘knows’ a valid assignment.

3.5. SNARK – Zero Knowledge. The above SNARK realization can be made
statistically zero knowledge if the prover also randomly samples δ1, δ2, δ3 ∈ F and

7

changes the polynomials of the QAP in the second phase to

A(z) := A0(z) +

m∑
i=1

aiAi(z) + δ1Z(z), B(z) := B0(z) +

m∑
i=1

aiBi(z) + δ2Z(z),

C(z) := C0(z) +

m∑
i=1

aiCi(z) + δ3Z(z).

In this way, any information about a valid assignment (a1, . . . , am) is hidden while
keeping the essential divisibility property of P (z) by Z(z) intact. The protocol must
be adjusted accordingly. See Theorem 13 in [GGPR13].

The protocol in [BSCTV14], Appendix B, should now be easier to understand.

References
[BSCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, Succinct Non-

Interactive Zero Knowledge for a von Neumann Architecture, USENIX
Association, August 2014, pp. 781–796.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, Quadratic Span
Programs and Succinct NIZKs without PCPs, Advances in Cryptology
– EUROCRYPT 2013. Proceedings (T. Johansson and P. Q. Nguyen,
eds.), Springer Berlin Heidelberg, 2013, pp. 626–645.

[PHGR13] B. Parno, J. Howell, C. Gentry, and M. Raykova, Pinocchio: Nearly
Practical Verifiable Computation, Proceedings of the IEEE Symposium
on Security and Privacy, IEEE, May 2013.

8

	Introduction
	Arithmetic Circuits and Quadratic Arithmetic Programs
	From QAP to zk-SNARK

